赤經 α 和赤緯 δ 可以下面的公式得到:
那麼從黃道座標轉為赤道座標的運算可以轉換為下面的形式: sin δ = sin ε * sin λ* cos β + cos ε * sin β
cos α * cos δ = cos λ * cos β
sin α * cos δ = cos ε * sin λ * cos β - sin ε * sin β
因為正弦和余弦的解不是唯一的,所以必須要三個公式都能滿足的解才是正解。
2、赤道座標轉換為黃道座標
sin β = cos ε * sin δ - sin α * cos δ * sin ε
cos λ * cos β = cos α * cos δ
sin λ * cos β = sin ε * sin δ + sin α * cos δ * cos ε
特別注意:
或許有些人試圖簡化前面二個等式,但因為正弦和余弦的解不是唯一的,這樣做並不是明智的方法,因為當反三角 函數被執行時,對應的角度會受到限制,就需要第三個公式來協助判斷與選擇。例如,
在第二個公式的赤經值α, 可以經由消除cosδ 使等式左邊只剩下tan α,或是放棄第三個等式,只利用第二式 cos α = cos λ cos β / cos δ。 在一些直接的運算下,他可能會將你引入歧途,例如當cos(-1),通常角度會在0° 和180° 之間,但是赤經 α 的範圍 是360°,sin(-1) 和 tan(-1) 的範圍也是180°,所有這些函數在它們的極限值附近的誤差都會明顯的增大。
在實務上,靠近黃道的天體,你可以正確的判斷赤經α的象限,因為它會與黃經λ在同一個象限中(但是必須排除靠 近極點的)。但是,一般的應用程式不易編排,這必須要用人工來處理。