[size=+2]The Mathematical Problem of the "Precession-Time Paradox" [size=+2]
[size=-1]
[size=-1]
[size=-1]There is no doubt anymore - outside the solar system, Einstein's complicated Theory of a non-linear gravitation does prevail considerably over Newton's linear. Can the so-called [size=-1]THEORY OF EVERYTHING[size=-1] be unraveled at last? [size=-1]
[size=-2] [size=-2]
[size=-1]Experts at the International Astronomical Union, the NASA's Jet Propulsion Laboratory, the US Naval Observatory, the Max-Planck-Institute for Astrophysics, the Royal Astronomical Society, the National Research Council of Canada and other renowned institutes, as well as famous physicists like Dr. Stephen Hawking are not able to solve the problem, since they do not comprehend the fundamental physical and mathematical principles of the civil-calendar.
[size=-1]
[size=-1]
[size=-1]
[size=-1]"The last time we had a real expert on these matters was with Fr. Clavius,* about 400 years ago."
[size=-1]
[size=-2]Christopher J. Corbally, Vatican Observatory Research Group
[size=-2]
[size=-2]*(Christophorus Clavius - the distinguished mathematician, who participated in the calendar reform of 1582)
[size=-2]
[size=-2]
[size=-2]
[size=+1]In scientific textbooks it is generally claimed, that our Earth is like a gyroscope. Viewed as a physical exception, Earth is suppose to precess opposite to its direction of rotation. The period of its complete precession cycle is said to take about 25 800 years. During this time period, it is claimed Earth supposedly goes through one retrograding rotation relative to the inertial system of the fixed stars. An additional time interval of one year of about 365 days must occur simultaneously. But since this time interval cannot be substantiated by actual time measurement, hence the theory of the Earth's precession does not have a proven scientific foundation.
[size=+1]
[size=-1]
[size=-1]
[size=-1] A simple mathematical example shall explain the physical aspect of this precessional motion:
[size=-1]
[size=-2]
[size=-2]
[size=-2]A[size=-2]_______[size=-2]B[size=-2]____________________________________________________[size=-2]C
[size=-2]
[size=-1]
[size=-1]
[size=-1] A gyroscope at point [size=-1]B[size=-1] on the line [size=-1]A-C[size=-1] makes [size=-1]n[size=-1] rotations with respect to the central point [size=-1]A[size=-1] in one complete period of revolution around [size=-1]A[size=-1].
[size=-1]
[size=-1]Logically, the gyroscope must make [size=-1]n + 1[size=-1] rotations with respect to the distant point [size=-1]C[size=-1].
[size=-1]
[size=-1]Assuming the gyroscope makes 365.24219878 rotations per revolution around [size=-1]A[size=-1], and within a certain time period it makes 25800 revolutions, the total amount of rotations with respect to [size=-1]A [size=-1]must equal:
[size=-1]
[size=-1]n × R = 365.24219878 × 25 800 = 9 423 248.73
[size=-1]
[size=-1]Assuming further that the gyroscope precesses and describes a complete retrograding precession cycle in 25800 periods of revolution, how many rotations does the make in that time period with respect to [size=-1]A[size=-1]?
[size=-1]
[size=-1]a) 365.24219878 rotations × 25 800 minus one rotation, equals 9 423 247.73 rotations
[size=-1]
[size=-1]b) 365.24219878 rotations × 25 800 minus one revolution, equals 9 422 883.49 rotations
[size=-1]
[size=-2]
[size=-2]
[size=-2]
[size=-2]
[size=+4]"Why one revolution?"[size=+1] [size=+1]
[size=+4]In order to understand this mathematical problem, we must analyze the time-discrepancy caused by this precession:
[size=+4]
[size=-2] [size=-1]Please, refer again to the above diagram. Imagine the Earth standing still at point "B" in its orbital plane on the line "A-C" between the sun "A" and the fixed star "C". We will assume that the Earth has already completed its 25 800 revolutions of 365.24219878 rotations each, without precession.
[size=-1]
[size=-1]Now we will make up mathematically for the one retrograding or precession motion of the Earth at point "B" in its orbital plane - first with a vertical and then with a 23‡° inclined Earth's axis:
[size=-1]
[size=-1]
[size=-1]
[size=-1]1)[size=-1] In the vertical position of the axis, the sun is always directly over the equator during the one retrograding motion of the Earth. This results in a change from a day to a night.
[size=-1]
[size=-1]This time interval corresponds to one rotation relative to the sun or the stars in a period of 25 800 years, which is equivalent to about 3.34 s per year* or about 9.12 ms per day.
[size=-1]
[size=-2]*equivalent to the regression of the fixed stars by yearly 50.26" on average
[size=-2]
[size=-1]
[size=-1]
[size=-1]2)[size=-1] In the 23‡° inclined position of the axis, the result is completely different. Not only does the change from a day to a night occur, but since the sun is now directly over the ecliptic of the Earth, also four seasons have to appear successively during this same retrograding motion.
[size=-1]
[size=-1]That time interval corresponds to one revolution of the Earth around the sun, implying more than 365 solar days in a period of 25 800 years, which is equivalent to about 1223 s per year or about 3.34 s per day!
[size=-1]
进动时间悖论的数学问题
毫无疑问,在太阳系之外,爱因斯坦复杂的非线性引力理论确实比牛顿的线性引力理论更为普遍。所谓的一切理论最终能否解开?
国际天文学联合会、美国航天局喷气推进实验室、美国海军天文台、马克斯·普朗克天体物理研究所、皇家天文学会、加拿大国家研究委员会等著名机构的专家,以及著名物理学家如ST博士以弗所霍金不能解决这个问题,因为他们不理解民间历法的基本物理和数学原理。
“上一次我们有一个真正的专家来研究这些问题是在大约400年前,克莱维乌斯神父。”
克里斯托弗科尔巴利,梵蒂冈天文台研究小组
*(克里斯托弗·克拉维乌斯,著名数学家,1582年参加历法改革)
在科学教科书中,人们普遍认为地球就像一个陀螺仪。作为一个物理例外,地球的进动方向与它的自转方向相反。据说它的完整进动周期大约需要25800年。在这段时间内,据称地球相对于固定恒星的惯性系经历了一次逆行旋转。一年的额外时间间隔(大约365天)必须同时发生。但是由于这个时间间隔不能被实际的时间测量所证实,因此地球进动理论没有一个被证实的科学基础。
一个简单的数学例子将解释这个进动的物理方面:
一个城市
A-C线上B点的陀螺仪在围绕A的一个完整的旋转周期内相对于中心点A进行N次旋转。
从逻辑上讲,陀螺仪必须相对于远点c作n+1个旋转。
假设陀螺仪绕a每转365.24219878圈,在一定时间内旋转25800圈,则相对于a的总旋转量必须等于:
N×R=365.24219878×25 800=9423 248.73
进一步假设陀螺仪在25800个旋转周期内进动并描述了一个完整的进动周期,那么在这个时间周期内,相对于a,旋转多少次?
a)365.24219878转×25 800减一转,等于9 423 247.73转
b)365.24219878转×25800减一转,等于9422883.49转
“为什么要革命?”
为了理解这个数学问题,我们必须分析这种进动引起的时间差:
请再次参考上图。想象一下地球静止在它的轨道平面上的“b”点,在太阳“a”和固定恒星“c”之间的“a-c”线上。我们假设地球已经完成了25800转,每转365.24219878转,没有进动。
现在,我们将从数学上弥补地球在其轨道平面“B”点的一次倒退或进动运动——首先是垂直的,然后是23°倾斜的地球轴:
(1)在地轴的垂直位置,在地球的一次逆行运动中,太阳总是直接在赤道上。这就导致了从白天到晚上的变化。
这个时间间隔相当于25800年中相对于太阳或恒星的一次旋转,相当于每年3.34秒*或每天9.12毫秒。
*相当于固定恒星的年平均回归50.26“
2)在轴的23°倾斜位置,结果完全不同。这种变化不仅发生在白天到夜晚,而且由于太阳现在正处于地球黄道的正上方,在同样的逆行运动中,四季也必须相继出现。
这一时间间隔相当于地球绕太阳公转一周,意味着在25800年的时间内超过365个太阳日,相当于每年约1223秒或每天约3.34秒!
|