深文急响 发表于 2008-12-8 23:17:51

陈维辉——中国数术学论哥德巴哈猜想之探索!

<p class="MsoNormal" style="margin: 0cm 0cm 0pt; line-height: 15pt; text-align: center;" align="center"><font size="3"><span style="font-family: 宋体;"><span style="font-family: 宋体;"><font size="3">陈维辉——</font></span><strong>中国数术学论哥德巴哈猜想之探索</strong></span></font></p><v:shapetype id="_x0000_t75" stroked="f" filled="f" path="m@4@5l@4@11@9@11@9@5xe" o:preferrelative="t" o:spt="75" coordsize="21600,21600"><v:stroke joinstyle="miter"></v:stroke><v:formulas><v:f eqn="if lineDrawn pixelLineWidth 0"></v:f><v:f eqn="sum @0 1 0"></v:f><v:f eqn="sum 0 0 @1"></v:f><v:f eqn="prod @2 1 2"></v:f><v:f eqn="prod @3 21600 pixelWidth"></v:f><v:f eqn="prod @3 21600 pixelHeight"></v:f><v:f eqn="sum @0 0 1"></v:f><v:f eqn="prod @6 1 2"></v:f><v:f eqn="prod @7 21600 pixelWidth"></v:f><v:f eqn="sum @8 21600 0"></v:f><v:f eqn="prod @7 21600 pixelHeight"></v:f><v:f eqn="sum @10 21600 0"></v:f></v:formulas><v:path o:connecttype="rect" gradientshapeok="t" o:extrusionok="f"></v:path><o:lock aspectratio="t" v:ext="edit"></o:lock></v:shapetype>
<p class="MsoNormal" style="margin: 0cm 0cm 0pt; line-height: 15pt; text-align: center;" align="center"><v:shape id="_x0000_s1026" style="margin-top: 0px; z-index: 1; left: 0px; margin-left: -16pt; width: 24pt; position: absolute; height: 24pt; text-align: left;" alt="" o:allowoverlap="f" type="#_x0000_t75"><w:wrap type="square"><font size="3"></font></w:wrap></v:shape></p><span style="font-family: 宋体;" lang="EN-US"><o:p></o:p></span>
<p class="MsoNormal" style="margin: 0cm 0cm 0pt;"><span style="font-family: 宋体;"><font size="3">中国数术学数论中图数精微是其精华,牛顿说:<span lang="EN-US">“</span>几何的辉煌之处,就在于只用很少的公理,得到如此多的结论<span lang="EN-US">”</span>。而非欧几何学只以平行线公理之疑议,而得出非欧几何学的。因此,一思而百虑,殊途而同归,会衍演为科学。</font><font size="3"><span lang="EN-US"> <br></span>中国数术学图数精微是古代科学地解决简单与复杂,即一与多(<span lang="EN-US">∝</span>)的数学哲学问题。</font><font size="3"><span lang="EN-US"> <br>“</span>中国古代利用图来研究数是常用的方法<span lang="EN-US">”</span>(许恩舫:多才多艺的数学家沈括、《陈积术》)</font><font size="3"><span lang="EN-US"> <br>“</span>而且多包含于一中,正如一包含于多中一样<span lang="EN-US">”</span>(思格斯《自然辩证法》<span lang="EN-US">238</span>页)。</font><font size="3"><span lang="EN-US"> <br>“</span>一种科学只有在成功地运用数学时,方算达致电了真正完善的地步<span lang="EN-US">”</span>(保尔<span lang="EN-US">·</span>拉法格《忆马克思》)</font><font size="3"><span lang="EN-US"> <br>“</span>唯天数者,改通三五<span lang="EN-US">”</span>(《史记》)。</font><font size="3"><span lang="EN-US"> <br></span>所以,中国古代天文、历法、数术必须懂数。数的内容为:</font><font size="3"><span lang="EN-US"> <br></span>个:<span lang="EN-US">6</span>、<span lang="EN-US">7</span>、<span lang="EN-US">8</span>、<span lang="EN-US">9</span>等。</font><font size="3"><span lang="EN-US"> <br></span>十:<span lang="EN-US">10=101</span>。</font><font size="3"><span lang="EN-US"> <br></span>百:<span lang="EN-US">100=102</span>。</font><font size="3"><span lang="EN-US"> <br></span>千:<span lang="EN-US">1000=103</span>。</font><font size="3"><span lang="EN-US"> <br></span>万:<span lang="EN-US">10000=104</span>。</font><font size="3"><span lang="EN-US"> <br></span>亿:<span lang="EN-US"> 108=10000</span>,<span lang="EN-US">0000</span>。</font><font size="3"><span lang="EN-US"> <br></span>兆:<span lang="EN-US">101210000</span>,<span lang="EN-US">0000</span>,<span lang="EN-US">0000</span>。</font><font size="3"><span lang="EN-US"> <br></span>经:<span lang="EN-US">1016=10000</span>,<span lang="EN-US">0000</span>,<span lang="EN-US">0000</span>。</font><font size="3"><span lang="EN-US"> <br></span>垓:<span lang="EN-US">1020=10000</span>,<span lang="EN-US">0000</span>,<span lang="EN-US">0000</span>,<span lang="EN-US">0000</span>,<span lang="EN-US">0000</span>。</font><font size="3"><span lang="EN-US"> <br></span>局大数:</font><font size="3"><span lang="EN-US">10000052 <br>“</span>考之参伍<span lang="EN-US">……</span>乘数持要<span lang="EN-US">”</span>(《淮南子》)。</font><font size="3"><span lang="EN-US"> <br>“</span>小多有数<span lang="EN-US">”</span>(《黄帝四经》)。</font><font size="3"><span lang="EN-US"> <br></span>那么:</font><font size="3"><span lang="EN-US"> <br></span>大数<span lang="EN-US">——</span>天数、定数、动数、命数,它的机率、或然率银少,不易命中,命中率低。</font><font size="3"><span lang="EN-US"> <br></span>中数<span lang="EN-US">——</span>一般推算的数,有公式、规律。</font><font size="3"><span lang="EN-US"> <br></span>小数<span lang="EN-US">——</span>微数模型、机率、或然率,通过统计,测不准也有命中率。</font><font size="3"><span lang="EN-US"> <br></span>局大数是有趣的。《沈括、梦溪笔谈,<span lang="EN-US">304</span>条》说:<span lang="EN-US">“</span>唐<span lang="EN-US">·</span>僧一行曾算綦局都数。凡若干局尽之。予尝思之,此固易耳。但数多,非世间各数可能言之,今略举大数。</font><font size="3"><span lang="EN-US"> <br></span>凡方二路,用四子,可变八千十一局。方三路,用九子,可变一万九千六百八十三局。方五路,用二十五子,可变八千四百七十二亿八千作百六十万九千四百四十三局。方六路,用三十六子,可变十五兆九十四万六千三百五十二亿作千二百三万一千九百二十六局。方四路,用十六子,可变四千三百万六千七百二十一局。方七路以上,数多无名可记,尽三百六十一格,大约连书万字五十二,即是局之大数<span lang="EN-US">”</span>,<span lang="EN-US">“</span>其法:初一路可变三局,自后不以横直,但增一子,即三因之,凡三百六十一增,皆三因之,都是都局数。又法:先计循边一为法。凡行一行,即以法累乘之,乘终十九行,亦得上法。又法:以自法相乘,下位付置之,以下乘上,又以下乘下,置为上法;又付置之,以下乘上,以下乘下,帝界加一法,亦得上数。有数法可求,哺此法最径捷,千变万化,不出此数,綦之局尽矣<span lang="EN-US">”</span>。</font><font size="3"><span lang="EN-US"> <br></span>沈括考察僧一行的局都数,又是围棋局数的大数,围棋<span lang="EN-US">19×19=361</span>子。</font><font size="3"><span lang="EN-US"> <br></span>如果:<span lang="EN-US">1000052=</span>都大数(都数为大数)。</font><font size="3"><span lang="EN-US"> <br></span>一路有黑局及白局、空局,共三局。</font><font size="3"><span lang="EN-US"> <br></span>方二路,用<span lang="EN-US">4</span>子<span lang="EN-US">=8</span>,<span lang="EN-US">011</span>局。</font><font size="3"><span lang="EN-US"> <br></span>方三路,用<span lang="EN-US">9</span>子<span lang="EN-US">=19</span>,<span lang="EN-US">683</span>局。</font><font size="3"><span lang="EN-US"> <br></span>方四路,用<span lang="EN-US">16</span>子<span lang="EN-US">=43046721</span>局。</font><font size="3"><span lang="EN-US"> <br></span>方五路,用<span lang="EN-US">2</span>子<span lang="EN-US">=8472088609443</span>局。</font><font size="3"><span lang="EN-US"> <br></span>方六路,用<span lang="EN-US">36</span>子<span lang="EN-US">=1500009463528231926</span>局。</font><font size="3"><span lang="EN-US"> <br></span>方七路,用<span lang="EN-US">361</span>子<span lang="EN-US">=100052</span>的都局数。</font><font size="3"><span lang="EN-US"> <br></span>一路变黑、白、空三局,增一子乘<span lang="EN-US">361=100052</span> ̄ ̄ ̄ 循主边一行为<span lang="EN-US">19</span>路<span lang="EN-US">=1162261467</span>局</font><font size="3"><span lang="EN-US"> <br></span>自法相乘,乘五次:</font><font size="3"><span lang="EN-US"> <br>19</span>+<span lang="EN-US">19=38</span>,<span lang="EN-US">19</span>各二行为</font><font size="3"><span lang="EN-US">1350085171744820773340 <br></span>围棋图数算亿万大数,大数指都局数,包括或然率,命中率、天数、劫数的必然性,零及下负数以下用图的模型法,这对下围棋的人用语数术学者有所裨益吧!因此,最复杂的数(<span lang="EN-US">∝</span>)可以化为最简单的数,最简单的<span lang="EN-US">1</span>+<span lang="EN-US">1=2</span>,也会变成极其复杂的数论吧!</font><font size="3"><span lang="EN-US"> <br></span>公元十一世纪贾宪在《黄帝九章算法细草》中提出比<span lang="EN-US">1654</span>年巴斯卡更早的三角形。而中国古代已也现《原始河图洛书图》,同时,<span lang="EN-US">6000</span>年前,辽宁东山咀牛河梁发现红山文化祭坛,以<span lang="EN-US">“</span>天圆地方<span lang="EN-US">”</span>为主。因此,数学更追溯于湮远古代。</font><font size="3"><span lang="EN-US"> <br>“</span>数始于一<span lang="EN-US">……</span>成于三<span lang="EN-US">”</span>(《史记<span lang="EN-US">·</span>律书》)<span lang="EN-US">“</span>数者<span lang="EN-US">……</span>始于一而三之<span lang="EN-US">”</span>(汉书《律历志》),<span lang="EN-US">“</span>则其为一、二、三、万也<span lang="EN-US">” ”</span>。古代从三开始而进入无穷大(<span lang="EN-US">∝</span>)。</font><font size="3"><span lang="EN-US"> <br></span>陈景润、邵品琮《哥德巴赫猜想》说:<span lang="EN-US">“</span>起先人们只会数一、二,而三个或三个以上时就数不清了,均称之为<span lang="EN-US">‘</span>多<span lang="EN-US">’</span>吧<span lang="EN-US">”</span>。这就是<span lang="EN-US">0.1</span>与<span lang="EN-US">∝</span>关系。</font><font size="3"><span lang="EN-US"> <br></span>天圆地方产生了<span lang="EN-US">“</span>周一径三<span lang="EN-US">”</span>数据。<span lang="EN-US">π=1</span>分之<span lang="EN-US">3</span>的圆周率近似值,如采及祖冲之的</font><font size="3"><span lang="EN-US"> <br>3.1415929</span>、数不完的近似值和测准,不如用<span lang="EN-US">3</span>来的简单。</font><font size="3"><span lang="EN-US"> <br></span>胡煦《周易函书约存》说:<span lang="EN-US">“</span>大衍,圆方之原。大衍,勾股之原<span lang="EN-US">”</span>。万氏从弹峰易梅更正河周洛书》说:<span lang="EN-US">“</span>盖河图,外方而内圆<span lang="EN-US">”</span>,《周髀算经》曰:<span lang="EN-US">“</span>数之法出于圆方<span lang="EN-US">……</span>以为勾广三,股修四,径隅五<span lang="EN-US">”</span>。如果河图是外切圆,对正切来说:</font><font size="3"><span lang="EN-US"> <br>Tan0○ = 0</span>,<span lang="EN-US">tan45○ = 1, tan90○= ∝</span>。</font><font size="3"><span lang="EN-US"> <br></span>洛书是内切圆,那么!勾股弦定理就产生。图数精微数论不得一般数论,它用图数模型来研究简单的<span lang="EN-US">0</span>,<span lang="EN-US">1</span>和多,复杂的<span lang="EN-US">∝</span>的问题。因此,它提供令人费解又易懂的数理关系。</font><font size="3"><span lang="EN-US"> </span></font><span lang="EN-US"><br style=""><br style=""></span></span><span style="" lang="EN-US"><o:p></o:p></span></p>

yuanywd 发表于 2008-12-9 09:32:28

陈维辉的很多手稿据说不知所终,楼主知道陈先生还有什么完整的文章吗?
页: [1]
查看完整版本: 陈维辉——中国数术学论哥德巴哈猜想之探索!